Hydroxyl radical scavengers inhibit lymphocyte mitogenesis.

نویسندگان

  • A Novogrodsky
  • A Ravid
  • A L Rubin
  • K H Stenzel
چکیده

Agents that are known to be scavengers of hydroxyl radicals inhibit lymphocyte mitogenesis induced by phorbol myristate acetate (PMA) to a greater extent than they inhibit mitogenesis induced by concanavalin A or phytohemagglutinin. These agents include dimethyl sulfoxide, benzoate, thiourea, dimethylurea, tetramethylurea, L-tryptophan, mannitol, and several other alcohols. Their inhibitory effect is not associated with cytotoxicity. The hydroxyl radical scavengers do not inhibit PMA-dependent amino acid transport in T cells or PMA-induced superoxide production by monocytes. Thus, they do not inhibit the primary interaction of PMA with responding cells. Treatment of peripheral blood mononuclear cells with PMA increased cellular guanylate cyclase in most experiments, and dimethyl sulfoxide tended to inhibit this increase. In addition to inhibition of PMA-induced mitogenesis, hydroxyl radical scavengers markedly inhibited the activity of lymphocyte activating factor (interleukin 1). The differential inhibition of lymphocyte mitogenesis induced by different mitogens appears to be related to the differential macrophage requirements of the mitogens. The data suggest that hydroxyl radicals may be involved in mediating the triggering signal for lymphocyte activation. Some of the hydroxyl radical scavengers are inducers of cellular differentiation,. nd it is possible that their differentiating activity is related to their ability to scavenge free radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation.

The stimulatory effect of ferrous salts on the peroxidation of phospholipids can be enhanced by EDTA when the concentration of Fe2+ in the reaction is greater than that of EDTA. Hydroxyl-radical scavengers do not inhibit peroxidation until the concentrations of Fe2+ and EDTA in the reaction are equal. Lipid peroxidation is then substantially initiated by hydroxyl radicals derived from a Fenton-...

متن کامل

Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.

Rat liver microsomes (microsomal fractions) catalyse the oxidation of straight-chain aliphatic alcohols and of hydroxyl-radical-scavenging agents during NADPH-dependent electron transfer. The iron-chelating agent desferrioxamine, which blocks the generation of hydroxyl radicals in other systems, was found to inhibit the following microsomal reactions: production of formaldehyde from either dime...

متن کامل

Mechanisms involved in the protective effect of estradiol-17β on lipid peroxidation and DNA damage.

Previous studies from our laboratory have shown that estrogens can protect against lipoprotein peroxidation and DNA damage. In this study, the mechanism of estradiol-17β (E2) action was investigated by comparing E2 with selective scavengers of reactive oxygen species (ROS) in terms of inhibition of 1) human low-density lipoprotein (LDL) peroxidation (measured by the diene conjugation method) an...

متن کامل

Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation

Autoimmune diseases mediated by a type of white blood cell-T lymphocytes-are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species ...

متن کامل

The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide.

The initiation of lipid peroxidation by Fe2+ and H2O2 (Fenton's reagent) is often proposed to be mediated by the highly reactive hydroxyl radical. Using Fe2+, H2O2, and phospholipid liposomes as a model system, we have found that lipid peroxidation, as assessed by malondialdehyde formation, is not initiated by the hydroxyl radical, but rather requires Fe3+ and Fe2+. EPR spin trapping with 5,5-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 1982